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'he r i g i d  model of t h e  fi lm growth is  discussed and t he  

r z s u l t s  of in -s i tu  invest igat ions a re  reviewed. The genera l i ty  

of t h e  conclusions drawn from in-s i tu  experiments i s  examined 

by a discussion of t h e  influence of t h e  experimental conditions 

( t h e  e f f e c t s  of t h e  e lec t ron  beam, t h e  res idua l  gases, t h e  sub- 

strate surface conditions,  and t h e '  f i lm  and subs t ra te  mater ia l s ) ,  

. * hnd byaan  analysis  of  t h e  growth of f .c .c .  metals on a l k a l i  

x l i d e s .  I n  the  f i n a l  discussion t h e  most s t r i k i n g  phenomena 

yoserved i n  t h e  formation of t h i n  continuous f i l m s  from i s o l a t e d  

nuclei  are considered from t h e  t h e o r e t i c a l  point of view. 

I. INTRODUCTION 

Thin films can grow by several  mechanisms shown i n  Fig. 1:l The 

Volmer-Sieber mechanism i n  whi 

s idevan-  apd outward u n t i l  a 

mechanisa,jiri which the  f i lm 

Krastanov mecr,anism i n  which 

.ch 3-dinensional nuclei  are formed, which grow 

cont inuou f i lm is formed, t h e  Frank-van der Me 

grows monolayer by monolayer and the  Stranski- 

f i rs t  a mono- o r  mult i layer  of  t h e  f i l k  materi 

or of L mi'xture between fi lm and subs t ra te  material is formed, on top  of which 
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3-aimensiofial c rys t a l s  grow. T h i s  paper i s  concerned witn t h e  processes which 

take place between the  formation of 3-dimensional nuclei  and t h e  formation of 

a continuous film. The nucleation process i tself  is  discussed i n  severa l  o ther  

papers i n  t h i s  conference. The growth processes i n  th i cke r  films have been 

reviewed recent ly .  2'3 We w i l l  be concerned mainly with t h e  k ine t i c s  of t h e  

f i l m  formation and w i l l  only b r i e f l y  discuss some of t h e  energet ic  aspects.  

O u r  poblem can be formulated e s sen t i a l ly  as follows: 

sys ten  of s m a l l  p a r t i c l e s .  which in t e rac t  with the  surface and with each o ther ,  

What i s  t h e  s t ruc tu re  of t h e  f i l m  consis t ing of these  pa r t i c l e s?  

s i d e r  two extreme cases. In  one case t h e  p a r t i c l e s  i n t e r a c t  s t rongly with each 

Given a surface and a 

We can con- 

o ther ,  but  only weakly with t h e  surface, j u s t  l i k e  drople t s  with high sur" A ace 

tension which do not w e t  t h e  surface.  When such p a r t i c l e s  contact each ozher 

they w i l l  form one l a r g e r  p a r t i c l e  and lo se  t h e i r  i d e n t i t y  i n  t h i s  way ("iiquid 

l i k e  behavior"). No t h i n  continuous f i l m  can be formed, but one o r  s e v e r d  

l a r g e  i s o l a t e d  p a r t i c l e s .  

s t rongly  with t h e  surface and so weakly w i t h  each o ther  t h a t  upon t h e i r  contact 

they simply s top  t h e i r  sideward growth ( " r ig id  model"). 

are between these  extreme cases. 

In  t h e  other extreme case t h e  p a r t i c l e s  i n t e r a c t  so 
' 

Most r e a l  s i t u a t i o n s  

11. THE R I G I D  MODEL 

This model is  e a s i l y  amenable t o  formal mathematical treatment i f  it is 

4 assumed t h a t  nucleation i s  completely a t  random. 

t h a t  given by Avrami' f o r  t h e  k ine t i c s  of c r y s t a l l i z a t i o n  i n  3 dimensions. 

The treatment is similar t o  

It 

l eads  t d  r e l a t ions  between t h e  experimentally measurable quan t i t i e s  and the  

b a s i c  parameters determining t h e  fi lm growth. 
I 

Such measurable quan t i t i e s  are: 
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(1) t h e  p a r t i c l e  d i s t r ibu t ion  f’ur.ction N(f, g,  Si,  t )  which is the  number of 

p a r t i c l e s  with cross-section f consis t ing of g atoms o r  molecules zt t h e  t i m e  t. 

The o ther  parameters Si character ize ,  e.g. t h e  shape of t h e  p a r t i c l e ,  i t s  orien- 

t a t i o c  and t h e  kind of nucleation center i f  prefer red  nucleation si tes e x i s t ;  

(2) the fraction F(t) of t h e  surface covered with p a r t i c l e s ;  ( 3 )  t h e  to ta l  

number N ( t )  of p a r t i c l e s ;  (4) t h e  nuiber M ’ ( f )  of  separated p a r t i c l e s ;  ( 5 )  t he  

number N( f , t j  of p a r t i c l e s  with in te r face  s i z e  f ;  ( 6 )  t h e  number G ( t )  of con- 
. 

densed atoms o r  molecules; and (7) the mean and d i f f e r e n t i a l  condensation 

coe f f i c i en t s  K( t ) ,  k ( t ) .  These quant i t ies  can be expressed as function of :  

(1) tne nucleation p robab i l i t i e s  I(f), JM(f) ,  J L ( f )  on a smooth surface,  on a 

point- l ike nucleation center  and on a line-shaped nucleation center  respect ively;  

(2) tix lateral  and normal growth r a t e s  f and 
.y 

of t h e  c r y s t a l s  when not impeded 

by neighboring c r y s t a l s ,  and ( 3 )  a system of parameters y character iz ing the  
I I 

c r y s t a l  shape. 

strate temperature T, t h e  heat of adsorption AH 

sur face  d i f fus ion  AH 

These parameters again depend upon t h e  vapor f l u x  N t h e  scb- 

and t h e  ac t iva t ion  energy f o r  

I)’ 

a 

of the  vapor molecules on the subs t r a t e ,  t he  s p e c i f i c  free d 

surface and i n t e r f a c i a l  energies u (3 a t h e  numbers M and Length L of 
SI c’  I’ 

poin t - l ike  and line-shaped nucleation si tes and upon o ther  parameters such as 

r e s i d u s l  gas pressure and composition, e lec t ron  beam current  densi ty  and energy. 

Tie formulae for  some of t h e  measurable quan t i t i e s  i n  terms of t h e  first 

set of parameters are given i n  Table I for nucleat ion on a surface without pre- 

f e r r e d  nucleat ion sites. 

! 
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TABLE I 

-?( t ) (1) F(t) = 1 - e 

t 

t '=O 

' 1 dG(t) (7) K(t) = -- dt 
1 

t 
where 

t'=O J. 

4 
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F,  I' are t h e  areas.which would be obtained i f  t he  p a r t i c l e s  would grow 

unimpeded by t h e i r  neighbors. .I i s  t h e  nucleation probabi l i ty  per u n i t  area 

of uncovered surface. Similar expressions can be given f o r  prefer red  nucle- 

a t ion  a t  a f i n i t e  number of sites. 

JM, J 

are t i m e  dependent and nucleation on the f la t  surface occurs simultaneously 

I n  general  t h e  nucleation p robab i l i t i e s  I ,  
8 - 

and t h e  growth rates f and 1; as w e l l  as t h e  c r y s t a l  shape parameters y L 

=,;+h n.rnlnn+inn A- ..+....- -A*---n --a -+L-.. ---e ---- a --.A^- rn'L-- ~ - - a -  J. 
n a w y l a  AISAL.LLCA.YLUAI WAA o w s y u ,  C U A A I G I ~ )  CUIU UI.LAGA ~ L C A C A A C U  D A C C ~ .  A u i S  A L T U U ~  CG 

very complicated expressions; therefore  only grea t ly  s impl i f ied  cases nave keen . 

calculated.  Some typ ica l  results are shown i n  Fig. 2 ,  toge ther  with experi- . 
mental results by Waltherb on t h e  condensation of Hg on polycrys ta l l ine  X i .  

In  t h e  ca lcu la t ion  it was assumed t h a t  nucleation takes  place only a t  a l imi ted  

number M 

mote t h e  maximum and minimum i n  t h e  d i f f e r e n t i a l  condensation coe f f i c i en t  k arid 

of nucleation s i tes ,  and t h a t  a l l  parameters are constant except f .  
0 

t h e  coiccidence of t h e  maxima of k and N '  i n  qua l i t a t ive  agreement with experi- 

ment. 
6 

I n  t h e  case of nucleation on a l imi ted  number of sites N' reaches i t s  max- 

i m u m  when F x 

sur face  E' is  at F z  A determination of t h e  coverage F at t h e  m a x i m u m  of 

I?' gives therefore  information on t h e  nucleation mechanism. 

we can put e -F(t) R$ 1 and obtain from Eqs.  (2)  and ( 4 )  i n  Table I, t h e  following 

however when nucleation can take place everywhere on t h e  

1 
m a x  

As long as F ( t ) < < l  
N 

two simple expressions f o r  t h e  nucleation probabi l i ty  

5 
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If - = const = f o ,  (4a) s impl i f ies  t o  ar . 

X ( C .  ,t' ) can therefore  be determined i n  two ways: from t i e  t o t a l  nuriiber of  

p a r t i c l e s  as a function of t i m e ,  o r  from the  p a r t i c l e  s i z e  d i s t r ibu t ion  furiction 

f at  a t i m e  t = t' + - i f  t h e  lateral  growth rate of t h e  p a r t i c l e s  i s  constant r; 
f 0  

and F<<1, The first approach w a s  used i n  t he  study of t h e  epitaxy of LiF on 

severa l  a l k a l i  hal ides  as a function of subs t r a t e  temperature and deposit ion 

rate.7 

1 

Replicas l i k e  t h e  one shown i n  Fig. 3 were taken at  d i f f e ren t  film 

thicknesses obtained with t h e  help of a shut te r .  

mental points  w a s  i n s u f f i c i e n t  and t h e i r  s c a t t e r  t oo  l a rge  f o r  meaningful results 

However, t h e  number of experi- 

8 on t h e  t i m e  dependence of I ( E i , t )  t o  be obtained. 

study of t h e  growth of Ag on amorphous carbon a t  425OC i n  t h e  e lec t ron  microscope, 

Poppa, i n  a much more re f ined  

succeeded i n  obtaining more poin ts  w i t h  much 1 e s s . s c a t t e r .  

t o  determine I(t) and h i s  results are shown i n  Fig. 4, which gives t h e  p a r t i c l e  

s i z e  d i s t r ibu t ion  funct ion,  " ( t )  as measured d i r e c t l y  and as calculated from 

t h e  d i s t r i b u t i o n  function, and shows surpr i s ing ly  good agreement. 

derived from N' as given i n  Fig. 4b using Eq. (2a) is 

He used both methods 

The I ( t  ) 

/ 

I 

t 

max 
s i n (  T-) I ( t )  = -- T %lax 

tmax 

, I  

t 

ind ica t ing  a time l a g  f o r  nucleation. More recent ly ,  Poppag has s tudied t h e  

growth of Sb on amorphous carbon over .at temperature and p a r t i c l e  flux range 

which covers nucleation with and without t i m e  l ag .  

growth before MI reaches i t s  maximum has thus been demonstrated t o  give valuable 

information on t h e  nucleation process. 

"he ea r ly  p a r t  of  t h e  film 

j 
I 

6 
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111 . THE AGGLOMERATION PEIOCESS: THE L I Q U I D - L I ~ B E ~ ~ V I O R  

We turn  now t o  t h e  question of how far r e a l i t y  deviates from tine r i g i d  

model. I n  1942, Hassl' had already noticed t h a t  with increasing thickness tne 

p a r t i c l e s  of a Ag f i lm coalesced i n t o  l a r g e r  p a r t i c l e s  ind ica t ing  t h a t  t h e  

r i g i d  model w a s  only a very rough approximation.' H i s  observations were l a t e r  

confinxed for many o ther  systems, but t he  most s t r i k i n g  evidence came from in- 

s i t u  film.groKth i n  e lec t ron  microscopes which aiiowed t h e  contiixims ~t. ,scr~a= 

t i o n  of t he  film growth. Such experiments have been performed f o r  t h e  systexls 

given i n  Table 11. 

Ag, Au, Sn 

43 
Au 

cu 

Au . 

Au 

Au , 

cu 
Pd f 

(1) AiiiGrphous Substrztes  

Formvar 20 

Carbon I 1 - 500 250, 425 
, Carbon 20 

Carbon 1 - 500 250 

MoS2 

Mica 

Graphite 

(1111 Au, 
{111) Pt 
MoS2 

(111) A@; 

(111) Pd 
Graphite 

(111) Au 

MoS2 

(2) Single Crystal  Substrates  

. 1 - 500 250 - 450 

20 - 500 300, 450 

1 - 10 

20 - 500 450 

20 300 - 400 

50 450 
20 - 500 200, 450 

1 - 10  

20 - 500 50, 200, 450 

11 

8, 15, 17 
17 ' 

15  

12, 13, 15, 17, 
18, 20, 21 

12, 1 5  
20 

16, 20 

17, 21 
1 4  
20 

15 
20 

19 

7 
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While the  results Of these invest igat ions vary widely w i t h  film and sub- 

strate mater ia l ,  subs t ra te  temperature, condensation rate, surface condition 

and res idua l  gas, they show a number of common fea tures  of which t h e  most 

s t r i k i n g  one is  t h e  l i q u i d  l i k e  behavior of t h e  c r y s t a l l i n e  f i l m  p a r t i c l e s .  

Neighboring p a r t i c l e s  with w e l l  defined crystal lographic  shapes suddenly coalesce 

t o  form one l a r g e r  p a r t i c l e  with rounded p r o f i l e  which on fu r the r  growth develops 

a crystai iographic  form again. At present it i s  not ce r t a in  wnet'ner ac tua i  

contact of t h e  sideward growing p a r t i c l e s  i s  necessary f o r  coalescence or i f  

coalescence can a l s o  occur by a sudden f i n i t e  r e l a t i v e  motion of separated 

p a r t i c l e s .  Figure 5a shows one micrograph out of a s e r i e s  taken during depo- 

s i t i o n  of Ag onto mica at h5O0C. 

shape i n  3 growth stages f r o m  t h i s  s e r i e s .  

sequence f o r  Ag on MoS2. 

i l l u s t r a t e d  by cinefilms. 

Ag on MoS2 taken by H. Poppa follows.)  

Figure 5b i s  a superposit ion of t h e  c r y s t a l  

Figure 6 shows a coalescence 

Better than any descr ipt ion i s , the  l i q u i d  l i k e  behavior 

(A shor t  presentat ion of a cinef i lm of t n e  growth of 

Tne tendency t o  coalescence of A& c r y s t a l s  on various subs t r a t e s  decreases 

from graphi te  t o  mica t o  MoS2 t o  {lllj A u  and (111) ?t. A t  t h e  same time t h e  

tendency t o  sideward growth increases indicat ing, increasing f i lm-substrate  

i n t e rac t ion .  On graphi te  nucleation i s  s t rongly  p re fe ren t i a l  and 3-dimensional, 

while oil t h e  metals given i n  Table 11, i n i t i a l  growth is mainly 2-diAenSiOnal 

( a l loy ing l ) :  3-dimensional c r y s t a l s  are formed only on top of t h e  i n i t i a l  layer 

and show l i t t l e  tendency t o  coalescence. 

l 

Pashley et  a1.21 have made some 

I q u a l i t a t i v e  considerations of t h e  coalescence mechanism using t h e  theory of 
I 

s i n t e r i n g ' o f  spher ica l  p a r t i c l e s .  

fusion can account f o r  t he  rap id  change i n  p a r t i c l e  shape during coaiescence 

with surface diffusion being t h e  most probable process. 

They found t h a t  both volume and surface dif-  

While t h e  mechanism of 



coalescence is  not completely understood a t  t h e  present time, t he re  i s  l i t t l e  I 
doubt t h a t  t h e  dr iving force f o r  it i s  surface and i n t e r f a c i a l  energy. '&e , 

l a r g e r  t h e  surface and/or t h e  i n t e r f a c i a l  energy as compared t o  t h e  subs t r a t e  I 
surface e n e r a ,  t h e  s t ronger  t h e  tendency t o  coalescence. High surface mobili ty I 

also encourages coalescence. The ggglomeration process i n  t h e  growing f i lm is 

therefore  determined t o  a l a r g e  extent by t h e  same parameters which deternine 

nucleation. It is t h i s  f a c t ,  l i t t l e  a?preciated i n  the  pas t ,  which makes t h e  

study of t h e  agglomeration s tage  so irn;?ortar,t f o r  t h e  understanding of t he  

s t r u c t u r e  of continuous fi lms. We w i l l  come back t o  t h i s  l a t e r .  

. 

Sone o ther  important observations of in -s i tu  s tud ies  should be,mentioned. 

When p a r t i c l e s  with d i f f e ren t  or ien ta t ions  coalesce,\the r e su l t i ng  p a r t i c l e  i n ,  

general  i s  again a s ing le  c rys ta l l i t e ,provided  t h e  zergirig ? a r t i c l e s  o r  at least 

one of them w a s  not t oo  l a rge  ( c  .1 - 1 p i n  t h e  systems inves t iga ted) .  This i s  

I 

~ 

I 

t r u e  both f o r  amorphous subs t ra tes ,  e.g. f o r  Ag on carbon12, and f o r  s ing le  

c r y s t a l  subs t r a t e s ,  e.g. f o r  A g  on MoS2,*' where p a r t i c l e s  which are i n  twin 

pos i t ion  t o  one another frequently assume one of t h e  two pos i t ions  upon merging. 
~ 

. A s  a cocsequence of these processes it i s  not possible  t o  ca l cu la t e  any of t h e  

previously discussed quan t i t i e s  IJ, N ' ,  F,  e t c .  using t h e  r i g i d  model if the 

merging p a r t i c l e s  a re  small which is t h e  case f o r  most evaporations. Only at 
I 

very l o w  supersaturat ion can w e  expect t h e  r i g i d  model t o  be appl icable .  

coalescence t h e  i s o l a t e d  c r y s t a l s  frequently r o t a t e  during growth; ro t a t ions ,  

Before 
, 
I 

random i n  t i m e ,  d i rec t ion  and magnitude up t o  3' have been observed f o r  Ag . -  

I c r y s t a l s  growing on MoS .12 For more detai ls  we r e f e r  t o  t h e  o r i g i n a l  work (8, 9,  . 2 

11-21 ) . 
. The experimental conditions oi i n - s i tu  inves t iga t ions  ncive been im?roved 

considerably from t h e  experiments r t f  XcLauchlan e t  al., 15 years  ago, i n  which 

9 



. ‘. 

t h e  vacuum was poor, t h e  evaporation r a t e  w a s  not control led and t h e  growing 

f i l m  was contaminated by t h e  electron beam, t o  the  present work of Poppa”’ i n  

good vacuum (N t o r r ) ,  with def ined evaporation r a t e  and no beam contam- 

inat ion.  Nevertheless, we have t o  discuss f irst  t h e  inf luence of t h e  experi- 

mental conditions on t h e  r e s u l t s  of in-s i tu  inves t iga t ions  before w e  can d r a w  

any general  conclusions on t h e  g r o h h  process of t h i n  films i n  general .  

IV. THE INFLUENCE O F  THE EXPBIMENTAL CONDITIONS 
ON T.IE F I M  GROWTH 

m-. main d i f f i c u l t i e s  f o r  a general izat ion of t he  r e s u l t s  of i w s i t u  

inves t iga t ions  are: t h e  influence of (1) t h e  e lec t ron  beam, ( 2 )  the  res idua l  

gas,  arid ( 3 )  t h e  surface condition and t h e  l imi ted  number of film and subs t r a t e  

materials used. 

The e lec t ron  beam can inf luence the  f i lm growth i n  many ways: by hydrocarbon 

contamination of t h e  subs t r a t e  surface o r  t h e  growing film; by heating; by 

d i s soc in t ion ,o f  t h e  subs t r a t e  and/or f i lm material ana t h e  r e s idua l  gas; and 

by desorption of adsorbed gases. 

e l imizated by proper heat ing of t h e  specimen and/or cooling i t s  environment. 

Spechien heat ing can be minimized by proper i l luminat ion,  but nevertheless can 

be cons iderable . i f  proper care  i g  not taken. 

responsible  for  t h e  reduced condensation of G e  on NaCl,23 i n  t h e  e lec t ron  bom- 

barded &rea i n  conventional vacuum and fo r  a similar phenomenon i n  t h e  conden- 

s a t i o n  of Au on N a C l  i n  u l t rah igh  vacuum.24 The somewhat slower f i l m  growtn of 

Hydrocarbon contamination can be near ly  

Specimen heat ing may have been 

21 
Xg on 240s i n  t h e  e lec t ron  bombarded area noted by Bassett15 and Pashley e t  al. 2 

may also have been due t o  specimen heating. 

s u b s t r a t e  surface by t h e  high in t ens i ty  beam can have t h e  same e f f e c t .  

Iiowever rap id  d issoc ia t ion  of t h e  

Disso- 

c i a t i o n  which is l imi ted  to compound s U d s t r a t e s  and films may not only reduce 



. 
o r  inzzease -,he rate of f i l m  formation but may also influence t h e  orientaticjn 

I of the  film c r y s t a l l i t e s .  A reduction of t h e  ra te  of film fornation is  observed 

when t?.e reooval of material due t o  dissociat ion is comparable w i t h  o r  l a r g e r  

than t h e  deposit ion rate,  This can happen at l o w  condensation rates and high 

continuous beam i n t e n s i t i e s .  The r a t e  of f i l m  formation increases i f  a compourA,d 

subs t ra te  is i r r ad ia t ed  with a high in t ens i ty  beam only for a small f r ac t ion  of 

t h e  condensation t i m e -  o r  it' t h e  eieciron haii is of low Iztezsity. 

has been observed, e.g. for Au on IiaC1 i n  Gin 

Nos2 ir, conventional vacuum. 

depends considerably upon the resfidual'gas and w i l l  be discussed below. 

1 

I 

This 

and f o r  A g  on N a C 1 ,  mica and 

The influence of a l o w  i n t e n s i t y  e lec t ron  bean 

2Jl 25 

24 
I 

O n  mno- 

atomic subs t ra tes  AO dissoc ia t ion  can occur and t h e  beam influence can be bes t  

explaized by desorption of adsorbed gases. 

for  Ag and Sb on carbon. 

Such observations have been nade 
I 

Whatever t h e  d e t a i l s  of t h e  influence of t he  eiec- 8 9 9  

t r o n  beam may be, t h e  l i q u i d  l i k e  behavior i s  not caused by it, because coalescence . I  
t akes  ?lace a lso i n  f i l m s  grown without t h e  influence of t h e  electron beam. 

Tinere are many indicat ions t h a t  res idual  gases have considerable i n f l u e m e  
I 

on t h e  ;roGn process,  depending -Jpon the  nature and pressure of t h e  gas &nG 

upon t h e  suSs t ra te  temperature. This is  i l l u s t r a t e d  by t h e  following exanpie: 

A discontinuous Pt f i lm deposited i n  'LXV onto mica has a much more uniform ana 

about an order of magnitude l a r g e r  grain s i z e  than a f i l m  obtained i n  a conven- 

t i o n a l  vacuum system. 

higher  mobili ty of t h e  Pt on mica i n  

, 

This has been a t t r i b u t e d  t o  a lower nucleation rate and 

Continuous Sn and I n  f i lms deposited 

at roor-tem2erature i n  UHV or i n  N2, Ii2, A,  CH4, and CO have a much larger g ra in  

s i ze  than  t n e  same f i l m s  deposited i n  a O2 r e s idua l  gas atmosphere. 

grown I n  N2, H2, A ,  CH4, and CO develop a s t rong preferred or ien ta t ion  ([loo] 

and [ClO] f iber  texture for Sn and I n  respec t ive ly) ,  while the  f i lms grown i n  C2 

The films 
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I a r e  randomly or iented.  I n  discontinuous films t h e  tendency t o  coagulate i s  

much l a r g e r  i n  UHV than i n , 0 2 ,  although the  f i lms i n  botn cases becorre elec- 

t r i c a l l y  continuous at  about t h e  same ,thickness. ' 
These observations ind ica t e  

t h a t  0 

cencc of t h e  individual grains.28 N a C 1  grows on N a C l  i n  H e ,  H2, N2, O2 at 

180°C u? t o  t h e  highest  deposition r a t e s  (1000 A/sec) only i n  p a r a l l e l  orienta- 

t i o n ;  while i n  t h e  presence of water vapor, CO, C6 

or i en ta t ion  are formed,and i n  t h e  presence of CLHio nuclei  i n  t w i n  o r i en ta t ion  

are f o x e d .  

i n t e n s i t y  e lec t ron  beam, (110) oriented c r y s t a l s  are formed ins tead  of twins. 

Tnese examples ind ica t e  t h a t  res idua l  gases, with conplications due t o  t h e  

e lec t ron  beaii, can strongly influence both nucleation and agglomeration by 

changing t h e  s i z e ,  shape and or ien ta t ion  of t h e  c r y s t a l s  both i n  t h e  discon- 

reduces t h e  mobility of t h e  deposited mater ia l  ana i n h i b i t s  t h e  coales- 2 

0 

o r  C ii nuciei  with {IlG; 2 2 2  

if N a C l  i s  deposited both i n  t h e  presence of C4Hlo and a low 

26 

' t inuous and i n  t h e  continuous f i l m .  %at such e f f e c t s  c e r t a i n l y  ex i s t  i n  t h e  

in - s i tu  inves t iga t ions  discussed above i s  ind ica ted  by Pashley's e t  a l .  obsewa- 

t i on21  t h a t  Au grows much more sidewards on MoS2 i f  deposited i n  Uh'v. 

Frequentiy, it i s  d i f f i c u l t  t o  separate t h e  influence of the r e s idua l  gas 

from t h a t  of t he  subs t r a t e  surface conaition: A t  high r e s idua l  gas pressure ,  

a surfLce cleaned, e.g. by heat ing,  ion o r  e l ec t ron  bombardment is  very soon 

again covered w i t h  an adsorbed l aye r ;  i n  UhV t h e  sur faces  have frequently l o s t  

t h e i r  adsorbed l a y e r  due t o  t h e  bake-out used t o  remove adsorbed l a y e r s  from 

the  w a l l s  ofl-the vacuum system. 

at  a glven r e s idua l  gas pressure a d  composition d i f fe rences  i n  t h e  subs t r a t e  

. .  

Nevertheless, t h e r e  are c l e a r  ind ica t ions  t h a t  

su r f acz  condition can s t rongly  influence f i l m  growth. 

decoration' of water marks i n  the ear ly s t a t e s  of f i lm growth at  low super- 

s a tu ra t ion .  

A t r i v i a l  example is t h e  

< 

A more sophis t ica ted  example i s  t h e  influence of t h e  sur face  l aye r  

12 
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on ril;ali ha l i ae  c r y s t a l s  cleaved i n  a i r  on the  oriefitatlor, of f i h s  lepos l ted  

onto them which was already noticed by Shirai.29 He found t h a t  Fe, Cr, Mo, xil * 

A g  f i l m s  deposited onto PjaCl  cleavage p lanes  which had been annealed a t  elevLZed 

temperatures (321 - 638OC) before deposition had i n  general more or ien ta t ions  

and n d i f f e r e n t  "ep i t ax ia l  temperature" than  films deposited onto as-cleaveL 

surfaces  under otherwise i d e n t i c a l  conditions. 

surface s ta te  has been demonstraterl espec ia l ly  s t r i k i n g l y  by t h e  experimerits of 

Recently, t he  influence of t h e  , 

ino  e t  ai..30 Yney showed t h a t  t h e  "ep i tax ia l  temperature" of A g  de?oslted oat0  

vacuum cleaved N a C l  had an "ep i t ax ia l  temperature" 15OoC below thaz  of a f i lm 

deposited on an air-cleaved surface.  We w i l l  d iscuss  t h e i r  r e s u l t s  togeyfier 

with t h h t  of l a te r  r e l a t e d  work below. There i s  l i t t l e  doubt t h a t  t h e  sur race  

condition carA also have considerable influence on t h e  in - s i tu  results, e.g. due 

31 t o  a recuction of t h e  f i h - s u b s t r a t e  i n t e rac t ion  by adsorbed layers .  Poppa*' 

has given an example f o r  t h e  influence of t h e  surface condition i n  in - s i tu  

experinents , .using ion bombardment cieaning . 
I n  a l l  in-situ experiments described above metals were used as fila material. 

Metals are ? i a s t i c ,  t h e i r  sur face  energy i s  only weakly an iso t ropic  and many of 

them h&ve high hea ts  of adsorptior f o r  r k s i c h a l  gases. 

expect t h e  resu ics  obtained w i t h  netals t o  be va l id  f o r  ion ic  c r y s t a l s  whicn 

, are b r i t t l e ,  which have sur face  energies varying s t rongly  with d i r ec t ion  and 

To what ex ten t  can w e  
/ ,  

which have low heats  of adsorption? Early q u a l i t a t i v e  of t h e  growth 

mechanism of t h i n  f i lms  of ion ic  c rys t a l s  d id  not i nd ica t e  any s t r i k i n g  coales- 

cence processes during t h e  merging of c r y s t a l s  as observed with metals. Tn i s  

i s  S ~ ~ G X - A  i n  F ig ,  8 which compares a LiF film on Pu'aC1 with a A u  f i l m  on X a C 1  i n  

a similar growth s tage.  

t h e  rl , id model. , Xore recent ly  however Campbell e t  al. 34 have made .sone 

This apparent lack of coalescence i n  f a c t  s t indated 

13 
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observations i n  LiF  films on carbon which seem t o  r u l e  out t h e  a7p l i czb i l i t y  

of t h e  r i g i d  model not because of coalescence of merging p a r t i c l e s ,  but because 

of break-up. Figure 9 shows some of t h e i r  r e s u l t s .  The number X '  of separ&zed 

p a r t i c l e s  f irst  decreases as it should af ter  zhe maximum of N'--the i n i t i a l  

increase of B' has not been observed 'oecause of t h e  high deposit ion rate--but 

then I;' increases  again w i t h  a simultaneous decrease i n  t h e  average p a r t i c l e  

a rea  f .  
. .  - 

This observation c l ea r ly  indicates  t h a t  w e  have t o  be very carefu l  i n  

t h e  general izat ion of t he  resuits obtained w i t h  metals t o  ion ic  c rys t a l s .  

Also general izat ions t o  o ther  substrates  than t h o s e  used i n  t h e  in - s i tu  

experiments have t o  be done with care.  The s ing le  c r y s t d  subs t ra tes  used are 

a l l  s t rongly an iso t ropic , ,have  l aye r  s t ruc ture  and cleavage planes wich hexa- 

gonal C? pseudohexagonal symmetry and iriducs i n  t h e  f l h  an e p i t a x i a l  (111) 

or i en ta t ion  (except graphi te ) .  The (111) or i en ta t ion  i s  not only favored by 

t h e  synmetry of t h e  subs t r a t e  but a l s o  by the  anisotropy of t h e  c r y s t a l  i t se l f .  

The (111) suzface has t h e  lowest f r e e  surface energy of a l l  planes i n  t h e  f . c . c .  

l a t t i c e  and , the  (111) in te r f ace  between c r y s t a l  and subs t r a t e  has t h e  lowest 

i n t e r f w i a l  energy conpared t o  a l l  other planes,  assuming the  same average 

misaatcn (see below). Therefore t h e  (111) or i en ta t ion  provldes t h e  minircw, 

energy configuration f o r  a plane p a r a l l e l  s lab .  If t h e  e p i t a x i a l  o r i en ta t ion  

is now G (109) orientation--as f o r  most f . c .c .  metals on alkali halides--then 

c 

w e  have t o  expect a tendency t o  formation of a (111) or ien ta t ion .  

t h i s  tendency i s  depends mainly upon the  anisotropy of t h e  surface energy of t h e  

How strong 

c r y s t a l  and t h e  i n t e r f a c i a l  energy. As both parameters depend on the  r e s idua l  

gas and the  scbstrate surface condition,we w i l l  examine now t h e  epitaxy of f .c .c .  

metals on a l i i s l i  ha l ides  from t h i s  point of view. 
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V. T E  EPITAXY OF f.c.c. b3:TALS ON ALKALI EALIDE CLUVAGE PLALZS 

Instead of t r ac ing  t h e  h i s t o r i c a l  development w e  w i l l  start  with t he  dis-  

24 cussioz of some of t h e  r e s u l t s  which Kunz 

UEN electron d i f f r ac t ion  s tudies  and o f  some ideas of the  mechanism of f i l n  

growth which nave been stimulated by these r e s u l t s .  

at previous r e s u l t s  i n  t h e  l i g h t  cf these ideas .  

has recent ly  obtained Crom i n - s l tu  

Afterwards, w e  w i l l  look 

Kunz's experiments were per- 

-10 formed i n  a Vacion-Ti g e t t e r  pumped sys t em with a base pressure of 2r10 t o r r  

after & 4-hour bakeout at  25OoC. 

between l o  and s e v e r a l 1 0 0  A/min onto air- and UEN-cleaved X a C 1  heated t o  30G - 
4 5 O O C .  Tne f i lm s t ruc tu re  w a s  observed by e lec t ron  d i f f r ac t ion  e i t h e r  continu- 

Au was evaporated simultaneously at rates 
0 

ously,  I n t e r z i t t e n t l y  o r  a f t e r  t h e  completion of t h e  evaporation i n  order t o  

elimicaite t h e  inf luence of t h e  electron beam. 

36OoC because at  t h i s  temperature the  a i r  cleaved sur face  could be maintained 

Most deposit ions were made at 

, 

i n  a cozdition d i f f e r e n t  f r o m t h a t  of t he  UHV cleaved surface f o r  severa l  hours. 

A t  h5OoC t h e  ' a i r  cleaved sur face  assmed the  behavior of t h e  UHV cleaved surface 

i n  l e s s  than one hour, vhich w a s  noted previously by Matthews and Grhbaum. 35 

A t  36OoC t h e  i n i t i a l  g r o n h  of t he  Au fi lm proceeds on both surfaces  i n  p a r a l l e l  

o r ien t rz ion  t o  t h e  subs t r a t e  ( see  Fig .  loa).  
I 

The r e f l e c t i o n  e lec t ron  d i f f r ac t ion  

does not show t h e  s l i g h t e s t  indicat ion of a {111} or i en ta t ion  p a r a l l e l  t o  t h e  

subs t ra te .  

than OL zhe a i r  cleaved surface except if t h e  UHV cleaved surface w a s  bombarded 

The i n t e n s i t y  of t h e  pa t te rn  on t h e  UHV cleaved,surface is much lower 

interni- ; tent ly  with electrons.  

s t r eaks  i n  t n e  (111) direc t ions  of the rec iproca l  l a t t i c e  develop (see  Fig. 1Ob). 

A t  a E ~ B G  thickness  of 30b - 400 

suddeniy decreases whiie t h e  background becomes much more in tense ,  

Wizh increasing f i l m  thickness wel l  pronounced 

I 

a mcjor cnange occurs: t h e  spot i n t e n s i t y  

From t h i s  
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point on t h e  growth on t h e  UHV cleaved pa r t  of t h e  c r y s t a l  proceeds qu i t e  

d i f f e ren t ly  from t h a t  on t h e  air-cleaved par t :  on the  a i r  cleaved s ide  the  f i L ,  

shows a well  pronounced epitaxy p a r a l l e l  t o  t h e  rock sa l t  l a t t i c e  w i t h  a com- 

p l ica ted  in t e r f ace  s t ruc tu re  (Fig.  1Oc); on t h e  vacuum cleaved s i d e  however {lllj 

or ien ta t ions  develop (Fig. l oa ) .  

scope examination of t h e  films gives the following addi t iona l  information: t h e  

A transmission e lec t ron  d i f f r ac t ion  and micro- 

nucleation probabi l i ty  on the UHV cleaved surface i s  much smaller than on the  

a i r  cieaved surface (Fig. I la ,  f ) .  X t h  increasing f i l m  thickness ,  c r y s t a l s  i n  

other  or ien ta t ions  besides t h e  p a r a l l e l  o r ien ta t ion  appear, predominmtly r&n- 

domly and (111) oriented c rys t a l s  (F ig .  12b, g )  . Coalescence leads on t h e  GXV 

cleaved surface,  where it is much more pronour,ced (Fig.  l l c ,  h )  , t o  a consider- 

abie  er.kancement of t h e  1111) or ien ta t ions ,  mainly at  the  expense of t h e  p a r a l l e l  

o r ien ta t ion  (Fig. 1 2 i ) ,  while on t h e  a i r  cleaved surface the  parallel or ien ta t ion  

becomes doninant (Fig. 12c).  As 6. r e su l t  of  t hese  tendencies continuous fi lms 

on UhV cleaved surfaces  cons is t  of large (111) oriented c r y s t a l s  with l i n e a r  

dimensions of t h e  order 1 p (Fig. I l k ) .  Many of them seem t o  be f r e e  of b i s lo -  . - __ 

ca t iozs ,  producing weak Kikuchi pat terns  (Fig.  12h) ,  others  are fill of dis lo-  

catiori t angles .  The continuous f i b s  on t h e  a i r  cleaved s i d e  cons is t  of much 

smaller c r y s t a l s  i n  p a r a l l e l '  o r ien ta t ion  which frequently contain twins (Fig.  l l e )  

or  prccuce c l e a r  Kikuchi pa t te rns  (Fig. 12h). 

Tkese r e s u l t s  c l e a r l y  show t h a t  t he  o r i en ta t ion  of t h e  continuous f i lms can 

be  cor;?letely d i f f e ren t  from that  of the i so l a t ed  nuclei  and t h a t  t h e  c r u c i a l  

s tage  of t h e  f i l m  growth i n  which the f i n a i  o r ien ta t ion  is  determined is  t h e  

coalescence s tage.  I n  t h e  present experiments t h e  only difference i n  t h e  experi- 

mental parameters leading t o  t h e  t w o  f i n a l  o r ien ta t ions  was i n  t h e  condition of 

t h e  subs t r a t e  surface.  As a consequence of  t h i s  difference,  t h e  nucleation 

16 
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probabi l i ty  was lower and t h e  tenieacy t o  coalescence w a s  'nigher on t h e  vacuuol 

cleaved surface than on the  air ..leaved surface.  

noted i n  conventional vacuum by S e l l a  and T r i l l a t ,  

observed i n  conventional vacuum, 

surface i s  i d e n t i c a l  t o  t h a t  on an air cleaved one. 

The first phenomenon w a s  ~,,lso 

36 however t h e  second is  zoz 

36 where t h e  coalescence on a vacuum cleavec 

37 

Wnat d is t inguishes  now'the two surface conditions and what is t h e  influence 

of t h e  r e s idua l  gas? Bethge e t  al. 38'39 and o thers  36'40 have s tudied  t h e  

s t r u c t u r e  of a i r  and vacuum cleaved SaCi surfaces  and Its change under t h e  in- 

fluence of water vapor using the preferred nucleation a t  s teps  ("gold decoration 

techniqie" ) 

not influence t h e  o r i en ta t ion  of Au r;uclei, not even i n  UHV,41 t h e i r  configura- 

and surface conductivity measurement. Although s t eps  do 36,38-40 

t i o n  czn give information on t h e  condition of t h e  surface.  

ments it has been concluded t h a t  an a i r  cleaved N a C l  surface inkerac ts  with t h e  

7rom these  experi- 

atmospheric water vapor and recryctaliLzes i n t o  8 hydrate l i k e  sur face  s t ruc tu re .  39 

The rave of Formation of t h i s  suri'ace s t r u c t u r e  depends upon water vspor p a r t i a l  

pressure. 

sur faczs  which had been exposed t o  wauer vapor a t  10  t o r r  f o r  one hour had t h e  

This i s  u s e d ' t o  explain t h a t  Au fllms deposited on UHV cleaved 

sane s t r u c t u r e  as f i l m s  grown on clea:: surzaces, while an exposure t o  75 t o r r  

( o r  nore) of a i r  f o r  one hour produced films with t h e  same s t r u c t u r e  as t h a t  

obtaiced on an air cleaved surface.35 

found t h a t  t h e  optimum or i en ta t ion  i n  Ag f i lm  evaporated onto N a C l  at  6ooc is 

42 On t h e  o ther  hand, Harsdorff and iiaetner 

a l reaQ obtained 8 sec  after cleavage i n  a r e s idua l  gas pressure of t o r r .  

By chzriging t h e  r e s idua l  gas they showed t h a t  t h e  gas component most e f f e c t i v e  

i n  irn?roving t h e  f i l m  o r i en ta t ion  was water vapor, i n  agreement with earlier 

vork ~ f i  t h e  degree of o r i en ta t ion  i n  Cu f i l m s  on NaC1 .  43 ' I n  t h i s  work Harsdorff 

had fGmd t h a t  t h e  degree of or iec th t ion  of continuous films of Au,  Ag, and Cu 



on S d 1 ,  K C 1 ,  K I  had maximum and minina  as function of subs t r a t e  te rqera ture .  

He associated the maxima with t h e  beginning of evaporation of adsor'oed layers .  

If t h i s  i n t e rp re t a t ion  is accepted s i x  adsorbed layers  on N a C l  are necessary 

44 t o  ex7lain t h e  da ta  f o r  Ag. Recent mass-spectrometric evidence seeins t o  

confirm t h e  existence of severa l  adsorbed H 0 layers .  

slowly heated t o  5OO0C severa l  H20 desorption peaks a re  observed at  reproducible 

If a N a C 1  c r y s t a l  is 2 

temperatures. One of them is shown i n  Fig. i3a. ZoWevez t h e  ~e&.  s h q e  is zct 

compazible with t h e  k ine t i c s  of a s i n g l e  desorption process. 

s tud ies  by Green45 who used NaCl exposed t o  D 0 i n  order t o  d is t inguish  between 

H20 on the  surface and H 0 i n  the  bulk reproduced t h e  D20 "desorption peaks"-- 

all s h i f t e d  t o  somewhat lower temperature--but showed d e f i n i t e l y  t h a t  they :annot 

be due t o  a desorption process (Fig. 13b). 

w i t h  j u s t  of 320 bubbles formed by d i f fus ion  of D20 i n t o  t h e  bulk. 

bursts a re  observed at mass 28 i f  even t h e  c rys t a l s  were cleaved i n  CO ana CO 

The re in t e r2 re t a t ion  of t h e  "desorption" peaks does not mean t h a t  adsorbed H 0 2 

Mass spectrometric 

2 

2 

We assoc ia te  -;he peaks t e n t a t i v e l y  

N o  sucn 

2' 

l aye r s  do not e x i s t ,  however muck higher heat ing rates would be required i n  

order to observe t h e i r  desorp t ic r .  

i s  ind ica ted  i n  low energy e lec t ron  d i f f r ac t ion  pa t te rns  

I n  f a c t ,  t h e  existence of an adsorbed l aye r  

46 of  N a C l  surfaces  

ex?o.seii to ii20 and baked f o r  several  hours at 2OO0C, which d i f f e r  from those of 

sur faces  heated to 5OO0C i n  a considerabty increased background, although they 

have t h e  same per iodic i ty .  

how t h e  H20 o r  OH- is d i s t r ibu ted  noma1 t o  t h e  surface cannot be determined a t  

present ,  We bel ieve therefore  t h a t  t h e  na tu re  and thickness of t h e  adsorbed 

l aye r  necessary f o r  t h e  formation of continuous e p i t a x i a l  films i s  s t i l l  an 

unsolved problem, 

If t h e  surface i s  a monolayer o r  a mult i layer  and 

Another open question is t o  w n a t  extent  t h e  failure t o  form an e p i t a x i a l  

film i n  t h e  absence of t h e  adsorbed layer  i s  due t o  nucleation or  due t o  
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I coalescmce. FTe have seen e a r l i e r  t h a t  A u  nuclei  on a UhT c k a v e d  N a C l  

surface a t  360Oc are or iented p a r a l l e l  t o  t h e  subs t r a t e ,  while with increasing 

f i l m  thickness  a (111) or ien ta t ion  develops. The p a r a l l e l  o r i en ta t ion  is a l s o  

prominent i n  very t h i n  films (10 A thickness)  a t  lower subs t ra te  temperatures 
0 

down to room temperature, although t h e  amount of (111) or i en ta t ion  increases  

w i t h  decreasing t e m ~ e r a t u r e . . ~ ~  This increase i n  (111) or ien ta t ion  can e a s i l y  
I 

be explained by coalescence because with decreasing subs t ra te  temperature t h e  

number of nuclei  increases  rapidly so t h a t  coalescence starts at  a much earlier 

s tage of f i l m  growth. On t h e  other  hand, it could be argued t h a t  t h e  experi- 

ments 2erformed up t o  now were not done with clean enough surfaces  and t h a t  on 

a r e a l l y  clean surface t h e  Au nuclei  would not be oriented. Sone of t he  argu- 

. ments i n  favor of such an opinion are:  (1) a bur s t  of H20 i s  observed i f  N a C l  

is  clesved i n  vacuum at room t e m p e r a t ~ r e , ~ ~  a t  l e a s t  a f r ac t ion  of '  t h e  H 0 can 

be adscrbed on t h e  surface of t he  c r y s t a l ;  ( 2 )  when a N a C l  c r y s t a l  i s  heated, 

many ~ r . a l l ~ ~  and severa l  l a rge  H20 burs t s  44s45  are observed i n  t h e  temperature 

range :nvestigated (up t o  50OOC). 

2 

I f  w e  a t t r i b u t e  t h e  bu r s t s  t o  H20 coming from 
I .  

t h e  l c t e r i o r  of t h e  c r y s t a l ,  then a surface cleaved even i n  the  bes t  vacuum has 

enough chance t o  be covered w i t h  a t  l e a s t  a f r ac t ion  of a monolayer of adsorbed 

B20 sup2l iea  from t h e  i n t e r i o r  of the c r y s t a l  even after a prolonged bakeout a t  

severa; hundred 'C. 

up i n  t h e  formation of t h e  in t e r f ace  of t h e  i n i t i a l l y  formed nuclei  which a c t  as 

scaver,gers f o r  adsorbed gases,  The i n i t i a l l y  formed nuclei  could thus  have 

p a r a l l e l  o r i en ta t ion ,  while t h e  m c l e i  formed l a t e r  would assume t h e  o r i en ta t ion  

c h a r a c t e r i s t i c  f o r  t h e  clean surface.  An indica t ion  t h a t  t h i s  might be t r u e  i s  

If the re  is a lirnited supply of adsorbed H20, it can be used 

t h e  o h e r v a t i o n  t h a t  t h e  Au nuclei on Uhi cleaved NaCl a t  360'C formed a t  a 

l a t e r  s t age  of t h e  f i l m  growth i n  the space between t h e  coalesced c r y s t a l s  have 

19 



-24 nearly exclusively (111) or ien ta t ion .  These cons ide ra thns  show the need 

f o r  more experiments t o  understand the  elementary processes of t h e  growth of 

t h i n  f i h s  even i n  a system as extensively invest igated as Au on NaC1.  

DISCUSSION 

We w i l l  discuss xiow some of t h e  most  outstanding features observed i n  t h e  

formation of continuous films from iso la ted  nuclei  from t h e  t h e o r e t i c a l  po in t  

of view. The most s t r i k i n g  phenomenon i n  metal f i l m s  i s  t h e  coalescenee of 

p a r t i c l e s ,  which changes p a r t i c l e  s i z ? ,  shape and o r i en ta t ion  as compared t o  

t h a t  expected from t h e  r i g i d  model. 

t o  coalescence depends mainly upon the  condition of t he  subs t r a t e  sur face ,  t he  

r e s i c u a l  gas pressure,  the  surface energy of the  film material and the  p a r t i c l e  

s ize .  

The experiments i nd ica t e  t h a t  t h e  tendency 

. 

"his i s  not surpr i s ing  i f  w e  consider t h a t  t h e  system t r ies  t o  minimize 

i t s  f r e e  energy, When some p a r t i c l e s  coalesce the  decrease i n  Gibbs free energy 

i where AI?\ ahd AF' are t h e  changes i n  surface and in t e r f ace  areas of t h e  Ak 

pt i r t ic les  respect ively,  t h e  uhkl are the spec i f i c  free surface energies of t he  

exposed surfaces  {hkl) of t h e  p a r t i c l e s ,  u h l k l l l  t he  spec i f i c  i n t e r f ace  energy 

and 5 

t o  g2'3 (g  number of atoms i n  the  p a r t i c l e ) ,  

i 

S t h e  spec i f i c  surface energy of the  subs t ra te .  The sur face  i s  proportional 
, .  

Therefore, t h e  free energy gain 

-1/3 1 
L o r  -where L i s  a ' l i n e a r  dimension AG 

t3 
per atom AGat = - i s  proport ional  t o  g 

o f ' t h e  p a r t i c l e ,  which explains t h e  decrease i n  coalescence tendency with p a r t i c l e  

s i z e .  I f  a very l a rge  p a r t i c l e  absorbs a very s m a l l  one t h e  l i n e a r  dimensions 

of t he  small one determine t h e  process because the whole energy i s  d iss ipa ted  

e s s e n t i a l l y  only i n  t h e  r ed i s t r ibu t ion  of t he  atoms of t h e  small p a r t i c l e ,  

20 



. -  According t o  Eq. (8 )  AG -uhbl. ' Adsorbed gases reduc-e t h e  surface 

energy according t o  t h e  Gibbs adsorption equation by 

PO 

Auhkl = - kT 1 rhkl (p )  $ 
0 

(9) 

where Po i s  the  pressure of t h e  gas with which t h e  adsorption layer  i s  i n  

equilibrium and r 
at  t h e  ihkli face. 

(p) t h e  sur face  concentration of t h e ' g a s  of pressure p 

rhkl increases  with gas press-ue azzd hetiti c;f a d s ~ r p t i ~ ~ .  
hkl 

Consequently u decreases. A t  a given gas pressure r is d i f f e ren t  on 
hkl  hk l  

diffeyent  c r y s t a l  planes.  

simultaneously with (111) planes (alll < ulOO < u llo 

For example {loo} and (110) planes of Cu exposed 

t o  a given oxygen dos is  

are covered with ha l f  a monolayer of oxygen, w h i l e  t h e  (111) planes have only 

a snall f r ac t ion  of a monolayer adsorbed.46 Therefore adsorbed gases cannot 

only reduce t h e  magnitude of t h e  surface energy but also i t s  anisotropy, e.g. 

t h e  dil 'fereace between t h e  surface energy of (100) and {111} planes. A s  a 

consequence t h e  decrease i n  t h e  f r e e  energy AG due t o  t h e  change i n  t o t a l  

sur face  area AF = '*.'zl AFLkl becomes smaller i n  t h e  presence of adsorbable 

gases. 

l a r g e r  0. 

planes decreases upon adsorption. Consequently t h e  tendency t o  coalescence 

decreases,  

have t o  come f r o m t h e  r e s idua l  gas,  it can a l s o  come f r o m t h e  subs t ra te .  

Molecules adsorbed on t h e  subs t r a t e  can d i f fuse  onto t h e  surface of t h e  p a r t i c l e s  

and be adsorbed there .  

This seems t o  be t h e  case i n  the  epitaxy of Au on KC1. 

Also t h e  free energy change due t o  t h e  replacement of (h'~1) faces  with 

such as {loo) planes by planes with' smaller u 
n k l  hkl  

such as {111) 

It should be noted t h a t  t he  adsorption l a y e r  does not necessar i ly  

So can react ion products between f i l m  and subs t ra te .  

24 

Wnile 'a  high p a r t i c l e  surface energy favors coalescence, a high subs t r a t e  

su r face  energy opposes coalescence ( s c e  Eq. (8)  ) . Adsorption of molecules 

, 
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' .  

. 
e i t h e r  from t h e  surrounding gas phase o r  from t h e  bulk of the  subs t r a t e ,  w i l l  

reduce t h e  subs t r a t e  surface energy and consequently encourage coalescence. 

For t he  influence of t h e  i n t e r f a c i a l  -- energy on coalescence on non-crystall ine 

subs t ra tes  t h e  same considerations are v a l i d  as f o r  t h e  surface energy. On 

c r y s t a l l i n e  subs t ra tes ,  however, t h e  s i t u a t i o n  is  more complicated due t o  t h e  

m i s f i t  between film and subs t r a t e  and due t o  the  e l a s t i c  anisotropy of t h e  fi lm 

c r y s t s l s .  

Merwe's a i s loca t ion  in te r face .  

This can be seen bes t  using t h e  most popular i n t e r f ace  model, vafi dsr 

For a given subs t r a t e  surface o r i en ta t ion ,  t h e  48 

energy of such an in t e r f ace  i n  t h e  l i m i t  of  l a rge  misfits 'is 

wherc b,Xs a measure f o r  t he  average m i s f i t  and C* is an in t e r f ace  shear  ktco hk l  

modules which depends upon t h e  shear'moduli Ghkl and Gs of t h e  f i l m  c r y s t a l s  . - _  -_ 

and subs t r a t e  r e spec t ive ly . .  Because of t h e  e l a s t i c  anisotropy of c r y s t a l s  

(3 

a l s o  2ue t o  a change i n  G*hW. 

r a t i o  

ropy, and t h e  shear moduli for shearing of t h e  (111) and (100) planes.  

i va r i e s  with c r y s t a l  o r ien ta t ion  not only due t o  a changing m i s f i t ,  but 
h K i  

This  i s  indicaged i n  Table I11 which gives t h e  

f o r  N a C l  and f .c .c .  metals as a measure f o r  t h e  e l a s t i c  a n i s o b  2c4L 
cll - c12 I 

. Glli 
2 2.48 6.08 1.88 1.93 3.05 .49 10l1 dyn/cm 

I 2 
1.26 232 12.47 4.20 4.37 7.54 1.44 10l1 dyn/cm 'lOG 
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. .  
If t h e  average m i s f i t  f o r  a (111) plane of a f.c.c. metal on a c r y s t a l l i n e  

subs t ra te  is not much l a rge r  than f o r  a (100) plane, and i f  the  s t r a i n  e n e r a  

i n  t h e  f.c.c. c r y s t a l  is a major p a r t  of t h e  t o t a l  i n t e r f ac i a l  

and a (111) or ien ta t ion  is more s t a b l e  than a (100) or ien ta t ion .  

energy, then 

i i 
111 100 u 

This may be the  case i n  Au on C l e m  I iaC1.  However, i f  t he  major part  of t h e  

i n t e r f a c i a l  energy r e s i d e s . i n  an ndsorption l aye r  w i t h  a small shear  modulus 

between substrate and c r y s t a l ,  then the  elastic anisotropy of t h e  film c r y s t a l  

i w i l l  >lay l i t t l e  r o l e  and t h e  minimum (J . w i l l  be mainly determined by m i s f i t  

and bonding conditions. 

adsorption layer .  

not s u f f i c i e n t  t o  explain t h e  or ien ta t ion  of f.c.c. metals on a l k a l i  hal ides  

is indicated by t h e  f a c t  t h a t  A 1  grows i n  general  i n  (111) or i en ta t ion  although 

it has t h e  same l a t t i c e  constant as Xg and Au and a much smaller e l a s t i c  anisot- 

This is probably t h e  case fo r  Au on N a C l  w i t h  an 

That m i s f i t  and e l a s t i c  anisotropy considerations alone are 

ropy than  t h e  o ther  f .c.c.  metals (see Table 111). However A 1  is t h e  only f.c.c. I 

I 
I metal with hea ts  of formation of halides l a r g e r  than those of the  a l k a l i  metals. 

"his indica tes  the  importance of chemical bonding, t he  p o s s i b i l i t y  of chemical 
I 

reac t ion  ana t h e  formation of t r a n s i t i o n  l a y e r s ,  even i n  systems which are not 

known GO a l l o y ,  mix or  reac t  with each other  i n  the bulk. 

such in te r fLce  layers  has been demonstrated very c l e a r l y  i n  recent  years  espe- 

~ 

The exis tence of I 

j 

c i a l l y  by low energy e lec t ron  d i f f r a ~ t i o n , ' ~  even i n  systems which are known 

not t o  a l loy  i n  t h e  bulk l i k e  Ag on h a b 6  o r  are assumed not t o  r eac t  l i k e  Au 

on NaCi o r  KC1. 

I 

I 
24 

f o r  Au on clean N a C l  independent 

of p a r z i c l e  s i z e ,  then w e  have t o  assume t h a t  t h e  i n i t i a l ' n u c l e i  have a (100) 

o r i e n t a t i o n  due t o  scavenging of adsorbed molecules which are incorporated i n t o  

their i n t e r f a c e ,  

i i i f  w e  accept the idea  t h a t  o 111 < u 

However--as we have pointed out some t i m e  ago1--the in t e r -  

facial  ,energy between a s m a l l  c rys t a l l i ne  p a r t i c l e  and a c r y s t a l l i n e  subs t r a t e  
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i s  a function of p a r t i c l e  s i z e  and shape, i r r e spec t ive  of'what i n t e r f ace  model 

i s  used, e.g. a d is loca t ion  model ( fo r  s m a l l  t o  moderate m i s f i t )  o r  a vacancy 

model ( f o r  large m i s f i t )  o r  any o ther  physical ly  reasonable model. This could 

i n  small p a r t i c l e s ,  which would account f o r  t h e  change i 
100 < = 111 lead t o  ai 

i n  o r i en ta t ion 'w i th  f i l m  thickness without.invoking adsorbed gases. 

Coalescence and t h e  change i n  f i l m  o r i en ta t ion  seem t o  us t h e  two most' 

i z p r z a n t  =hennmena during t h e  t r a n s i t i o n  from i s o l a t e d  nuc le i  t o  the  continuous 

film. Xowever t h e  osc i l l a to ry  behavior of t h e  degree of or ien ta t ion  of f.c.c. '  

' metals on a l k a l i  ha l ides  as a function of t e m p e r a t ~ r e ~ ~  may a l s o  have t o  be 

Mass spectrometer experiments 45 a t t r i b u t e d  t o  t h i s  s tage of t h e  film growth. 

suggest,  t h a t  Harsdorff 's  o r ig ina l  explanation based on a mult i layer  of adsorbed 

H 0 i s  incorrect .  

Tne most probable one on basis of the  experimental evidence ava i lab le  at present  

Therefore w e  have t o  consider some other  possible  explanations. 2 

i s  t h e  following: As ind ica ted  by t h e  mass Spectrometer H 0 evolves espec ia l ly  2 

rap id ly  from the  bulk of t h e  c r y s t a l  at spec i f i c  temperatures Tee 

least p a r t i a l l y  be incorporated i n t o  t h e  growing in t e r f aces  of t h e  c r y s t a l s  

Sefore large sca l e  coalescence occurs and allow t h e  c r y s t a l s  t o  rotate--as 

observed f o r  Ag on MoSt2--into t h e  minimum energy posi t ion.  However some o ther  

possible  explanations cannot be excluded: 

at  t h e  temperatures T 

face f o r  t h e  p a r a l l e l  o r ien ta t ion ,  lending t o  prefer red  nucleation i n  p a r a l l e l  

It may at 

, 

(1) H20 may evolve rap id ly  enough 

t o  a i d  i n  t h e  formation of a low energy Ag/NaCl in te r -  e 

o r i en ta t ion ;  (2 )  the i n t e r f a c i a l  energy is  an o s c i l l a t o r y  f'unction of i n t e r -  

face size. '  The in t e r f ace  s i z e  of a nucleus increases  with temperature. There- 

f o r e  t h e  degree of o r i en ta t ion  of t h e  nucleus is an o s c i l l a t o r y  funct ion of 

temperature. This mechanism requires nucleus sizes incompatible with t h e  gen- 

e r a l l y  held views of t h e  s i z e  of nuclei .  

nuc le i  determine the  f i n a l  o r ien ta t ion  of t h e  film, i , e .  t h a t  they do not r o t a t e  

Both (1) and ( 2 )  requi re  t h a t  t h e  
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during growth. ( 3 )  crystals 

with small misorientations r e l a t i v e  t o  each o ther  may not change the i r sor ien-  

t a t i o n  when they m a k e  contact.  

therefore  determined by t h e  or ien ta t ion  of t h e  individual  c r y s t a l s  a t  t h e  t i m e  

of contact ,  which i n  t u r n  depends i n  an o s c i l l a t o r y  manner on t h e  s i z e  of the 

c rys t a l .  

t h e  continuous f i lm  is  an osc i l l a to ry  function of temperature. 

speculat ive in t e rp re t a t ion  could be continued f o r  m a n y  o the r  experimental 

observations,  but  it seems f u t i l e  u n t i l  more experimental data are avai lable .  

This is not t r u e  for the following explanatlon; 

The or ien ta t ion  of t he  continuous f i l m  is 

As t h e  c r y s t a l  s i z e  is  a function of temperature, t h e  o r i en ta t ion  of 

This type of 

i n  swmary, t h e  broad sca l e  introduction i n t o  t h i n  f i lm  growth research of 

UHV tec'miques and of methods t o  produce clean surfaces  have made necessary a 

considerable rev is ion  of previously held views of t h e  growth of t h i n  films. 

have a l s o  t h e  use of more sophis t icated inves t iga t ion  methods such as in - s i tu  

e lec t ron  microscopy, low energy electron d i f f r ac t ion  and mass spectrometry. We 

have Learned tha t  t h e  s t r u c t u r e  of continuous films m a y  be completely d i f f e ren t  

from t h a t  expected on t h e  basis of the  s t ruc tu re  of t h e  i n i t i a l l y  formed nuclei ,  

not osly i n  p a r t i c l e  s i z e  and shape--which w a s  known f o r  some time--but a l s o  i n  

o r i en ta t ion .  

play a major r o l e  i n  t h e  s t r u c t u r e  of t h e  continuous f i lm.  

as nucleat ion is--to a considerable degree by environmental conditions such as 

resid-aal gas pressure and composition, subs t r a t e  surface condition and also 

condi t ion of t h e  bulk of t h e  substrate '  (e.g. impurity content) .  

phenomenon is t h e  coalescence of c rys t a l s ,  a t  least i n  m e t a l  films, 

i n i t i a l  o r ien ta t ions  i n  t h i n  films which have previously been a t t r i b u t e d  t o  

So 

The growth phenomena which follow nucleation have been shown t o  

They are influenced-- 

The most s t r i k i n g  

Many of  t h e  

p re fe r r ed  and moat, if not a l l  of t h e  i n i t i a l  growth or ien ta t ions ,  3 

may be due t o  coalescence. We suggest, therefore ,  t o  c a l l  them "coalescence 
\ 
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orieztat ions" .  They may be i d e n t i c a l  with t h e  nucleation o r i en ta t ion  l i k e  i n  

, 

~ 

f .c .c .  metals on MoS2 or  mica, o r  they may be d i f f e ren t ,  l i k e  i n  A u  on clean 

NaC1. "his has t o  be considered i f  films with a given o r i en ta t ion  are t o  be 

grown ep i t ax ia l ly .  Certain manipulations such as proper pretreatment of the  

subs t r a t e  o r  evaporation i n  r e s idua l  gases may have t o  be used i n  order  t o  

suppress t h e  formation of a coalescence or ien ta t ion  d i f f e ren t  from t h e  nucle- 

a t i  on or ien ta t ion .  

Space has not permitted us t o  discuss here t h e  formation of continuous non- 

c r y s t a l l i n e  films or of c r y s t a l l i n e  fi lms v i a  a l i q u i d  o r  amorphous phase. 

This is t h e  subject  of o ther  papers a t  t he  conference. We also have omitted a 

discussion of t h e  formation of imperfections although a considerable amount of 

work has been done on t h i s  subjec t  and 8 l a r g e  f r ac t ion  of t h e  imperfections 

found i n  continuous films are assumed t o  have been introduced i n  the  coalescence 

s tage .  Our goal w a s  only t o  i l l u s t r a t e  w i t h  some examples our present  under- 

standing o f i t h e  formation of continuous f i l m s  from i so la t ed  nuclei  and of t h e  

p a r t i c l e  s i z e  and Orientat ion i n  continuous f i l m s .  

needs t o  be done, espec ia l ly  on films of ion ic  and valence *crys ta l s ,  before w e  

can hope t o  develop a general  theory of t h e  subject  of t h i s  paper, \ e.g. by 

general iz ing the  r i g i d  model, 

Much more experimental work 
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FIGURE CAPTIONS 

Fig. 1. The three basic  f i l m  growth mechanisms: (a) Volmer-Weber mechanism, 

(b) Frank-van der Merwe, ( c )  Stranski-Krastanov mechanism. 

(a) Theoretical behavior of number of separated particles N', 

1 

Fig. 2. 

I d i f f e r e n t i a l  condensation coeff ic ient  k and number of condensed 

atoms according t o  a strongly simpiifieZ rigic? mdel; TI.. L, p a r t i c l e  

f lux ,  a bulk condensation coefficient.4 (b) Condensation of Hg on 

polished N i  at - 8 5 O c .  ' j  
6 

Fig .  3. Replica of an e p i t a x i a l  LiF film on N a C l  a t  45OoC, p a r t i c l e  f lux * 

7 
. .  14 -2 -1 N, = 1-10  cm sec . Original 60 O O O : ~ .  

Fig. 4. I n i t i a l  growth (N' < K t  m a x  ) of Ag on amorphoue carbon a t  425OC, 

p a r t i c l e  flux ND = 2.5.1.0~~ cm -2 -1 8 sec . 
Fig, 5. Growth and coalescence of Ag on mica a t  45OoC, deposit ion rate 

1 .  
t. 

20 

Several s tages  of t h e  coalescence of Ag on MoS2. 

0 

~ approximately 50 A/min. 
1 

20 
Fig. 6. 

Fig. 7. 
" 

The influence of t h e  surface condition: Ag simultaneously evaporated 

onto a boron n i t r i d e  s i n g l e  c r y s t a l  flake and amorphous carbon at 
I i 
Is  

I 
I 

4OO0C. 32 
, 33,7 

Fig. 3. The agglomeration s tage on ion ic  films LiF on KBr at 306OC. 

Original 30 0OO:l. 
1 9  

i 34 NI 
i Fig. 9, Tie growth of LiF on amorphous carbon a t  r o o m  temperature. 

.- 
number of separate! c rys t a l s ,  f average c r y s t a l  cross-section, F 

\ . .  
i f r ac t ion  of surface covered, 
I , 

. .. 30 
# 

i . . .  
! 

I 

i , *. , 
L. . .  
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Fig. 10. 

. '. 
FIGURE CAPTIONS (CONT'D) 

I 

In-situ re f lec t ion  electron d i f f rac t ion  pat terns  of Au films grown 

on N a C l  i n  UHV a t  360'C and approximately 50 A/min. <llO} azimuth 

of N a C 1 ,  Apprbximate thicknes's: (a)  10 A, (b) 100 A,  (c)  and (d)  

thick films (> 500 A), ( c )  a i r  cleaved surface,  (d)  UHV cleaved 

surface. 

0 

0 0 

0 

L .  9il 

Fig. 11, 
' 

Electron micrographs of Au films of varying thickness grown on 

N a C l  i n  UMI at 360'C end approximately 50 A/min. (a)-(e) :  air 

cleaved surface; ( f ) - (k) :  UHV cleaved surface. Original 20 0OO:l. 

Transmission electron diffract ion pat terns  of Au films of varying 

thickness grown on N a C l  at 360'~ and approximately 50 A/min. 

(a)-(d): air cleaved surface; (e)-(h) :  UHV cleaved surface, ( f ) :  10 A 

of Au, s t ab i l i zed  w i t h  Al on UHY cleaved surface,  

A typical  water peak in . the  gas evolution during t h e  heating of N a C l  

0 

24 

Fig. 12. 
0 

0 

24 

Fig. 13. 
ckystals. (a) according (b) according to. 45 
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